杏彩官网注册水利水电工程电缆设计规范

2024-04-26 14:16:25 阅读次数:5

  杏彩官网注册水利水电工程电缆设计规范电力通信网是电网一次系统安全生产的重要支撑系统,是确保电网安全、稳定、经济运行的重要手段,而光缆通信线路则是这张电力通信网的主要组成部分。为保障电力通信安全,以更高标准规范光缆线路建设及运维来提升光缆可靠性和提高光缆线路管理水平显得极为迫切。

  近年来随着GIS系统等先进技术的推广及配电线路管理水平的提高,极大的提升了电网供电可靠性。我们看到,配电线路的管理经验在很多方面是值得光缆线路管理借鉴的。本文针对光缆线路与配电线路同质化管理进行了一些有益的尝试探索。

  随着最近几年光缆全覆盖和供电所属地化管理理念的提出,嵊州电力通信网覆盖面积越来越大,光缆线路也越来越长。但嵊州市境内水域发达且四面环山,地貌构成大体为“七山一水二分田”。因此在光缆线路的设计选址过程中,不可避免的需要跨越江面和山地,给建设及维护工作带来了大量的不便。

  截止2014年年底,国网嵊州市供电公司共有光缆40条,总里程244.892km,计3512.412芯公里,其中ADSS光缆1条共12.735km,普通光缆39条共232.157 km。光缆杆塔共3539基,其中电力杆2157基,铁塔231基,自立杆1151基。

  在以前电力通信网的规划及建设中,对电力通信网发展的前瞻及规划不足,通信部门对于光缆线路选择中较多的考虑建设成本、便捷程度等因素,而忽略了通信网长远的规划及潜在的安全隐患、运维成本等,这就导致了现阶段部分光缆线路纤芯冗余不足、故障较多、运维难度大,而且迁改补强困难重重。

  在光缆运维过程中,因嵊州地形复杂,光缆分布较广,且通信运维管理人员紧缺,缺乏有效的监督、管理,运维质量一直难以提升,随着光缆长度的增加,各种光缆中断故障呈现上升趋势。仅2013年全年,公司范围内共发生光缆故障18次,故障详细情况如下:

  由上表1可知,如果管理规范、巡视工作到位的话,这其中大部分故障都是可以提前规避的。因此,为保障电力通信安全,以更高标准规范光缆线路建设及运维来提升光缆可靠性显得极为迫切。

  随着GIS系统等先进技术的推广及配网运行人员装备的加强,配电线路管理水平提升较快,值得通信光缆管理借鉴其经验。于是光缆线路与配电线路进行同质化管理就顺理成章的提上了桌面。

  在建设上,加强与设计部门、配电部门等相关部门交流,建立沟通协调机制,将光缆线路管理与配网线路管理紧密结合,大幅提升光缆线路规划的前瞻性、可靠性、及时性。在运维上,内部通过技术创新、管理创新、精益化运维,外部与乡镇供电所沟通协调,利用配电相对充沛的人力资源,逐步完善通信光缆运维模式,使巡视工作常态化,检修运维工作及时化。“两手抓,两手都要硬。”有效降低光缆线路安全隐患率,提高光缆通信可靠性,提高电网整体安全运行水平。

  光缆线路的建设应结合配网业务发展需求和通信技术发展前景,统一规划、分步实施、适度超前,避免重复建设。

  根据《嵊电基〔2008〕111号_关于印发嵊州市供电局工程项目全过程管理实施细则(修订版)》文件的通知,参考配线线路工程项目对于全过程管理要求,严格工程项目全过程管理,保证光缆线路建设质量。

  高效、安全、可靠的光缆线路建设,需要各相关部门统一协作。建立协同建设机制,充分共享配网资源,才能保障光缆建设质量,提高电力通信可靠性。

  参照《国网浙江嵊州市供电公司电力线路及设施运行维护管理规定及考核办法(嵊电运检[2014]3号)》文件对于配电线路运维管理要求,严格光缆线路运维标准,建立光缆线路运维规范。

  在光缆线路运维管理中通过采用四级组织结构,流程化管理模式等创新管理办法实现精益化运维管理。明确缺陷分级制度,并根据不同缺陷定义确立相应响应措施。采用一些先进技术运用到光缆运维工作中,增加光缆运维工作效率。巡线工作明确各自巡线范围,责任落实到人。加强安全管理,保障人身、设备、财产安全。

  嵊州电力光缆线%以上与配电线路同杆、塔架设,同时供电所电力线路巡视工作人员较为充沛,巡线经验丰富,熟悉沿线情况,了解一些政策处理的办法,为双方配合巡视创造了条件。光缆运维单位与乡镇供电所建立协作机制,不仅增加光缆运维人员与供电所巡线人员的交流机会,而且大大加强光缆运维人员对于线路情况的了解,对于树木砍伐等涉及到政策处理的事件,也能得到经验及帮助。

  嵊州电力管辖范围内的所有光缆线)与相关部门建立协同建设机制,大幅提高光缆线)及时发现隐患,有效降低故障发生次数,提高光缆线)降低巡视及维护人力、物力成本30%以上。

  城(镇)配电网线路规划时,通信人员协同参与规划,将光缆线路规划与配网线路规划相结合,将已建架空光缆线路一并纳入配网改造规划,对已有配网线路且该地区存在光缆建设需求的同步纳入配网改造规划。同时应将光缆管道统一纳入配电网电缆管道建设规划,同步为通信光缆建设预留通信专用管孔或子管,光缆宜采用管道阻燃光缆。

  (1)参考配电线路建设相关管理制度,建立光缆线路建设规范,综合考虑光缆线路使用年限、通信网发展前景、设计容量需求等。从设计、施工到验收等过程进行严格管控。

  严格要求光缆线路设计质量,从源头上提高光缆布局及构成的合理性。比如树林茂密段采用防鼠光缆,有效降低鼠害威胁。跨公路段部分配电线路对地距离不够,难以保证光缆对地距离时,可考虑其他配电线路绕行等。

  在通信光缆线路施工作业中,应积极推广使用标准化作业指导书,将现场安全措施、作业工艺标准真正落实到施工过程中的每一个环节,使施工工艺质量得到保障。并做好相关资料储备,为后期运维工作打下良好基础。严格标示标牌管理,及相关设备台账的登记工作。

  加强光缆线路验收质量要求,把好工程最后一道关,严禁低劣违规工程通过验收事件的发生。验收工作也可参考配电线路资料,不仅节省成本,更保证了资料的准确性及完整性。

  首先应增强配电线路设计人员与光缆线路设计人员之间的交流、沟通,成立线路设计小组,并由同时具有配电线路和光缆线路设计经验的人担任小组长。充分分享配网规划及设计资源,将光缆线路设计与配网线路设计有效的融为一体,实现配网、光缆的同步规划、设计,完善建设的前期工作。比如预留光缆管道,杆(塔)设计时考虑光缆拉伸强度、承重、对地距离等各方面因素。只有从设计时就开始综合考虑配电和光缆线路要求,才能从根本上打好同质化管理基础,提高通信可靠性。

  其次是增强配电线路管理部门与信通部门的交流沟通,加强双方先进工器具与先进技术的共享,并建立沟通协调会制度,即不定期组织召开配电信通沟通协调会,交流工作经验及下一步工作规划,而且每次线路施工方案确定前,必开配电、信通等部门沟通协调会,并形成由有两种工作经验的人担任施工方案总负责人,配电、信通等部门人员为相应部分负责人的模式。施工方案应根据配电、信通工作流程,并综合考虑人员、物资、天气等情况,采用同步组织、同步建设的方针,最大程度完善施工方案,在保证工程质量的同时,降低总工程量及工程所需时间。并建立相应应急预案,预防突发状况。高标准的光缆线路建设要求,与配电部门沟通协调机制,是光缆线路与配电线路同质化管理的重要措施之一。

  最后还要增强配电线路施工人员与光缆线路施工人员的沟通协调,建立标准化作业指导书,并定期组织双方人员共同学习相关标准规范,掌握必备的配电线路和光缆线路知识。施工时,所有施工人员按施工方案流程进行,共享先进工器具,并积极进行交流沟通和协同施工,共同关心双方施工安全及工程质量。只有基层加强认识,才能全面完善光缆线建立专业的光缆线)成立光缆线路运维专项管理小组,明确责任分工,加强管理。

  由分管生产公司领导担任组长,整体掌控整个光缆线路运维工作。由配电线路管理主任和分管信通主任担任光缆线路运维负责人,由供电所线路班班长和信通运检班班长担任运维小组长,各班组运维人员作为小组成员负责对线路进行日常巡视工作,简单缺陷立即处理,复杂情况按流程汇报(见缺陷处理流程图),并对整个巡线情况进行记录。信通运检班班长负责组织光缆运维人员对光缆线路进行定期专业巡视工作,并对未同杆架设部分进行重点巡视,还负责对供电所巡线人员反馈信息及时安排处理。由此成立四级管理组织体系,建立规章制度,明确职责和分工,使光缆线路运维工作始终处于有序的状态。四级管理组织结构图1如下;

  (2)制定供电所协同管理制度,将配电线路管理与光缆线路管理相结合,充分利用供电所人力资源。并建立光缆巡视作业指导书,规范巡线工作管理。

  开展联合巡线是维护电力光缆线路健康运行的有效措施之一,光缆线路负责人应制定光缆线路供电所协同管理制度,将配电线路管理与光缆线路管理相结合,各线路运行部门,必须确定线路设备主人。做好定人、定线(设备)、定周期巡视的“三定”和班组负责人责任分解落实工作。并根据巡线工作需要,定期召开巡线人员会议。总结交流巡线经验,普及巡线常识,表彰和奖励先进典型。形成光缆外委运维单位、信通运检班、供电所三位一体的协作机制,信通运检班作为光缆线路的管理部门,在两者之间做好协调工作。供电所充分利用它的“本地人优势”,在政策处理中发挥沟通、协调的作用。这就能大大增加光缆巡视工作频率,提升光缆运维效率,提高光缆线 三者关系图

  巡线人员严格按作业指导书工作,及时准确掌握线路的运行状况,沿线环境变化情况等,并做好护线宣传工作。

  建立缺陷管理发现-记录-报告-审核-处理-消除-报告的流程,实现缺陷的发现、报告、消除、验收的闭环管理。针对不同缺陷进行分类处理,缺陷处理流程图4如下:

  随着GIS系统等先进技术的推广,配电线路管理日趋成熟。这些先进技术的成熟运用对于嵊州电力光缆维护也有着重要的作用。针对当前电力通信网络资源特别是光缆资源管理分布广、地理性强、数据量大的难点,利用市公司建设的GPS基站,建立统一的通信GIS系统,组织运维人员对所管辖的光缆线路进行摸底,确定每一基杆塔的经纬度,并将其导入通信GIS系统。借此采用面向对象的软件工程管理方法,建立图形化的和智能化的电力通信网络资源管理系统。并将其与嵊州地形图相结合,建立更为精准、直观的光缆网络数据库。这套系统的运用,实现了对资源数据的录入、修改、配置、调度、删除以及设备资料的管理,为光缆维护工作提供了全面准确的辅助信息,缩短了故障定位时间,大大提高了工作效率。光缆线)如下(其中根据不同杆塔类型,危险路段采用了不同颜色进行区分,为维护工作提供了方便)

  线路巡视工作应根据年初下达的故障指标(指标按上年度递减20%)分解到人,签订责任书。实行线路包产到人,按月度、年度进行奖惩,超指标进行严惩,降低指标进行重奖,这就解决了巡视人员的责任心不强、巡视不到位等情况。对巡视人员每半年进行技术培训、理论、实作考试,提高线路巡视人员的技能水平,发现问题及时报告,消除不安全隐患萌芽。

  将光缆线路安全与电力线路安全同质化管理,建立规范的安全管理考核制度,并经常组织光缆运维人员参加安规等相关安全知识培训和考试,让安全管理与员工的切身利益挂钩,形成标本兼治的有效机制,让安全管理落到实处。

  巡视工作过程中,应根据资料判断同杆、塔挂接的光缆是否为电力在用光缆,如果发现未经许可悬挂的光缆,应尽早协调,使其另择路径。发现报废光缆,应及时通知信通运检班班长,让其尽早安排光缆运维人员处理。

  (1)与配网线路的同步规划、协同作业。有效提升了光缆建设的前瞻性,可执行性,同时避免了重复投资。

  (2)通过加强与各相关部门的沟通交流,增加配线线路建设过程中通信部门的参与度,不仅降低了通信部门的工作量,更大大提高了光缆线路建设质量,有效降低光缆线路隐患发生率及迁改补强费用。

  (3)通过与供电营业所的协同管理,在几乎不增加配电线路巡线人员工作量的基础上,大大增加了光缆线路的巡视频率,进而有效增加光缆线路的隐患排查率,有效降低故障发生次数,提高光缆线路可靠性。据不完全统计,截止至10月15号,今年供电所人员巡线处,光缆运维人员巡线处,共处理通信光缆故障9起,隐患发现并及时处理率较往年提升了86%,故障率降低了50%,用于维护的人力、物力成本减少30%。

  (4)通过GIS系统建设,让整个电力光缆网在嵊州的分布情况牢牢掌握在运维人员脑海当中,哪里是危险点,哪些路段是需要重点巡视等情况都在电脑里面一查便知,这大大缩短了发生故障后的定位时间,有效降低了光缆中断时间,也有利于整个通信网的规划改造。据统计,故障定位时间平均减少了30分钟。

  (5)成立四级管理体系,完善各种相关规章制度后,明确了各岗位职责和分工,使整个2014年光缆线路运维工作始终处于有序的状态。抓管理、抓防范、抓消缺,这样进一步提高了通信可靠性,保障了企业的正常经营和电力的安全稳定运行。

  (6) 光缆线路的规范化管理,标示牌、警示牌的悬挂到位,不仅有效避免了乱挂接现象,降低了巡视难度,而且提高了通信可靠性。

  利用基建、技改、线路迁移等措施进一步提高管道光缆和特种光缆的比例,提升光缆可靠性;此外,由于供电所巡线人员对于光缆线路具体规范要求不是很了解,有些隐患发现得不是很及时,需要进一步加强学习培训。

  嵊州电力光缆线路通过管理创新,全面梳理了管理模式,并根据光缆线路发展要求,完成了对嵊州电力光缆线路管理模式的优化和调整,进行了光缆线路与配电线路同质化管理的探索,解决了光缆线路建设水平不高,人力资源不足,运维水平偏低等问题,提高了光缆通信可靠性,保障了光缆建设质量,并减少了光缆维护人力及物力成本,具有较大的借鉴意义及推广价值。

  [2]楼平,王拢盛建雄,孙卫庆,张国平.电力光缆线路状态检修的探索与实践[J].电力系统通信.2011(12):64-69.

  岱山海域潮流能发电并网示范工程的发电装置主要采用AR1000TM型涡轮机,该型涡轮机由新加坡亚特兰蒂斯资源有限公司(以下简称“ARC”)研发,是世界上最先进的潮流能涡轮发电机,装机容量为1MW。装机台数为1台,安装在岱山秀山岛海域的龟山水道上,发电装置发出的电通过海底电缆传输,海底电缆长度约为2km,连接至位于秀山岛上的潮流能配电站,升压后通过长度约4km的10kV输电线路并入电网运行。年平均发电量在2000MWh以上。

  示范工程位于岱山秀山岛海域,考虑接入系统就近原则,故接入秀山岛内变电站较为合适。目前,秀山岛已建成投运的110kV变电站有3座,其中兰秀变电站为公用变电站,其余2座为用户变电站。根据国家电网公司企业标准《分布式电源接入系统规定》和《国家电网公司关于印发分布式电源接入系统典型设计的通知》,1~6MW统购统销分布式电源一般采用1回10kV电压等级专线kV母线kV侧,就地平衡当地负荷。同时,根据本潮流能发电示范工程的发电能力,综合考虑年平均发电量在2000MWh以上、年发电利用小时数不超出3000h等因素,按1.65A/mm2经济电流密度可计算得出,10kV送出线,考虑接入电网架空导线输送容量预留适当裕度,推荐采用50mm2架空导线。同时,根据输送容量,考虑交流海缆采用3×120mm2截面。

  目前,兰秀变电站主变压器容量为1×5+0.63(冷备)万kVA,常石变电站主变压器容量为2×1.6万kVA,惠生变电站主变压器容量为2×1.25万kVA。根据岱山电网运行方式,正常方式下,兰秀变电站通过舟山电厂———兰秀1回线受电,并转供常石变电站及惠生变电站负荷。计算中考虑全网峰、腰、谷负荷,其中腰负荷按峰负荷的90%考虑,谷负荷按峰负荷的60%考虑;常石变电站、惠生变电站为用户变电站,考虑到生产需要,峰、腰、谷负荷均按满负荷考虑。峰负荷、腰负荷时岱山电网功率因数取0.92,谷负荷功率因数取0.95。考虑到分布式电站接入电网,与电网保持无功功率零交换的目标,本示范工程潮流计算中,潮流能发电按站内无功功率自我平衡后向电网注入有功功率考虑。计算结果如下:

  (2)正常峰负荷时,潮流能发电机组满出力,配电站母线kV。峰负荷状态下,潮流能发电机组出力60%,配电站母线)正常腰负荷时,潮流能发电机组满出力,配电站母线)正常谷负荷时,潮流能发电机组满出力,配电站母线短路电流计算分析

  考虑示范工程近期投运,根据接入系统方案,通过1回线kV母线,目前,兰秀变电站主变压器容量为1×5+0.63(冷备)万kVA。暂考虑示范工程采用阻抗电压百分比为4%的升压变压器,根据计算结果,示范工程配电站10kV母线kV母线kA,满足设备安全运行需要。远景年,兰秀变电站主变压器容量为2×5万kVA,示范工程配电站接入电网方式不变,配电站10kV母线kA,满足系统设备的安全运行需要。综上分析,示范工程并网后短路电流满足电气设备安全运行要求。

  示范工程潮流能发电系统的发电机由在潮流中旋转的叶片和永磁发电机(PMG)组成,发电机将产生额定电压为3.8kV的变频交流电,并连接到PCS1000变流器,变流器由发电机侧INU(逆变器单元)、直流电连接和电网侧的ARU(整流单元)组成。根据分析,结合10kV配电网电气主接线的一般型式,潮流能陆上配电站建议采用单母线并网工程线路设计方案分析

  示范工程线路部分的设计分海中段和陆上段2部分,其中海中段是本次设计的重点。拟选线路路由为从潮流能发电涡轮机至陆上潮流能配电站,路由总长度约1920m,其中陆上部分从登陆点至变电站的长度约230m,海底电缆路由长度1690m。路由位于秀山岛海域,地形地貌复杂,将对示范工程的设计、施工造成一定影响。

  2.3.1登陆点地形地貌分析综合考虑周边地理环境和人文因素,示范工程的海缆登陆点拟选位置位于秀山岛北客运站东侧山体小型湾岙内。该处地貌属于自然海岸段,海岸线大部分平直,基本呈东西走向,西中部建有标准海塘,岸线m区域为砂砾岸滩,杏彩体育网站注册低潮时均露出海床。岸线后方为山谷,两侧隆起、中部下陷,植被较为茂盛,后方山体顶部为正在施工建设的示范工程配电站。就登陆点周边地理环境来看,该登陆点位置较合理。首先,解决了施工材料的运输问题,同时也方便施工船靠岸;其次,从海缆日后运行来看,该岙口属于无人区,且没有张网区,可有效避免海缆运行后受外力破坏;最后,海缆登陆处地质为砂砾岸滩,适合电缆沟的开挖和铺设。

  示范工程海缆预选路由海底部分的地形存在一定起伏变化,涡轮机安装在北部岩礁上,中部为龟山水道深槽区,南面地形呈一定坡度上升至海岸,中间有大面积岩礁分布。总体而言,路由区海底地形呈两侧不对称的V字型航槽地貌格局。水深基本在50m,最大水深达85m,坡度达140°。经勘测,海域底质类型主要可归纳为2种,即岩礁区和泥混砂质分布区,路由大部分区域以基岩为主,地层性质稳定,常年受强烈海流冲刷作用影响;少部分区域存在泥沙或砂贝沉积,位于基岩两侧边坡,基本呈滩地落淤、通道冲刷的地貌形态。从已知海缆预选路由地形地貌及底质情况来看,在海缆敷设及运行中都会有一定困难。首先,地形不规则的高低起伏,会使海缆存在一定区域的悬空段,而悬空区域又是基岩,在海流的作用下海缆会直接与基岩摩擦,从而造成损害;其次,该处水流很急,水深较深,海缆在敷设过程中会有很多不可控的潜在风险,同时也极易造成海缆实际敷设位置与预选路由的偏离;最后,该处底质大部分是基岩,锚损与基岩磨损是海缆受损的最主要“杀手”,据统计,95%的海缆破坏都是由其产生。这种不良底质的存在,将给海缆日后运行造成很大风险。综上分析,海缆预选路由地形地貌及底质情况不理想。但考虑到潮流能涡轮机安装位置及周边海域情况,海缆预选路由通道已是最佳通道。鉴于此,设计认为必须做好以下3件事,才能保证示范工程的顺利投运,保障海缆的安全运行:

  (1)解决海缆在基岩区的附加保护。根据舟山电网多年来的海缆工程设计及运行经验,有3种方式:第一,基岩开槽,通过爆破的方式把海缆敷设区域下的基岩炸平并形成沟槽状,将海缆放置沟内。第二,水下抛石,在海缆敷设完后,用石块将基岩区的海缆四周盖住。第三,套保护管,即在海缆外面加装耐磨、耐腐、强度高的不锈钢保护套管。上述3种方式中,第一、第二种方案对海缆的保护效果最好,基本能消除基岩造成的损伤,但方案可操作性不强,主要原因是作业难度较大、施工价格昂贵,而第三种方式则具有可操作性,但就本工程来说还需进一步改进,为使海缆套上保护管后在海底减少移动从而避免与基岩长期摩擦,应在一定间距内附加重力锚进行锚固,或在敷设时每隔数米在保护管上连1块重力块,使海缆沉入海底后不随洋流移动,从而有效保护海缆。

  (2)解决海缆施工方面的难题。本示范工程海缆路由区域的流速较大,极易使施工船偏离预选轨道,也会在敷设过程中带来海缆受损的风险。同时,海缆敷设时

  要边敷设边套保护装置,将大大增加施工难度,就国内海缆施工能力来看,极具挑战性。因此,施工单位应根据工程特点,对每个重要环节制定相应的技术方案及保障措施。(3)解决海缆运行后受外力破坏的风险。示范工程海缆路由直接穿过龟山水道和瓦窑门山即秀山航道,该航道的运输船及渔船众多,为避免海缆受到船舶抛锚及其他破坏外力,需进一步加大该条海缆的监控措施。除了设立警示装置外,还需建立1套综合在线监控系统,该监控系统应涵盖AIS(船舶识别系统)、杏彩体育平台网页版远程视频监控系统、雷达及红外成像等,从根本上杜绝船舶的外力破坏。

  目前,该潮流能发电示范工程并网接入电力系统尚处可研阶段,根据分析,工程建设最大的制约因素是海缆输电线路的施工,只有顺利解决海缆工程中存在的问题,示范工程才能得以顺利实施。目前拟采取的方法是:

  (2)施工船:根据流速,将采用与之匹配的带动力定位系统的施工船,以保证海缆敷设路由与设计相符。

  (3)海缆保护:基岩区域安装不锈钢保护管,同时附加重力锤固定,使之在海底不会受洋流影响而来回移动,减少海缆摩擦。

  (4)监控:采用海缆内部监控与外部监控相结合的方式,建立1套综合在线监测系统。外部监控将采用AIS、红外成像、雷达、视频监控等设备;内部监控含海缆温度、扰动、故障等。目前,该方案已初步得到业主单位及专家的认可。示范工程一旦顺利投运,将成为我国首个潮流能发电并实现商业化并网运行的工程。它的投运,可作为今后研究实现大容量、高电压等级并网的技术支撑,充分发挥潮流能发电的优势,有效解决能源瓶颈问题,还可以节约能源及减少二氧化碳排放。示范工程投运后每年将至少节省标煤600t,减少二氧化碳排放1900t。

  管线综合布置技术是依靠计算机辅助制图手段,在施工前电安装工程施工完后的管线排布情况。即在未施工前先根据所施工的图纸在计算机上进行图纸“预装配”,有条件的可以采用3D (三维图)直观的反映出设计图纸上的问题,尤其是在施工中各专业之间设备管线的位置冲突和标高重叠。

  根据模拟结果,结合原有设计图纸的规格和走向,进行综合考虑后再对施工图纸进行深化,而达到实际施工图纸深度。应用“管线综合布置技术”极大缓解了在机电安装工程中存在的各种专业管线安装标高重叠,位置冲突的问题。不仅可以控制各专业和分包的施工工序,减少反工,还可以控制工程的施工质量与成本。

  “管线综合布置技术”各专业的施工单位和人员提前熟悉图纸。通过提前审图这一过程,使施工人员了解设计的意图,掌握管道内的传输介质及特点,弄清管道的材质、直径或截面大小、强电线缆与线槽(架、管)的规格、型号、弱电系统的敷设要求,清晰各楼层净高、管线安装敷设的位置和有吊顶时能够使用的宽度及高度、管道井的平面位置及尺寸,特别是风管截面尺寸及位置、保温管道间距要求、无压管道坡度、强弱电桥架的间距等等。

  管线综合布置技术在未施工前先根据所要施工的图纸进行图纸“预装配”,通过“预装配”的过程就把各个专业未来施工中的交汇问题全部暴露出来。提前解决这些问题,为将来施工中安排施工工序打下良好基础,因此可合理安排整个工程各专业或各分包的施工穿插及顺序。

  综合支吊架的最大的优点是不同专业的管线使用一个综合支架,减少支架的使用,合理利用了空间,同时降低了成本。只有采用管线综合布置技术才能更好地进行综合支架的选择和计算。

  由于图纸制作、处理、审核全在现场,使与机电工程有关的管理及施工人员(包括甲方、监理、总包、劳务分包等),均通过图纸对所涉及的专业内容(各专业图

  纸的综合图、机电样板的汇总报审图、与土建的交接图、方案附图、洽商附图、报验图及工程管理用图等)进行管理调整,及时掌握变更的状况。

  适用于多专业或多分包单位施工的建筑机电安装工程管理,尤其适用于机电工程总承包管理。同时也适用于市政工程中的道路桥梁的配套管线. 已应用的典型工程

  金属矩形风管薄钢板法兰风管制作、安装技术与传统角钢法兰连接技术相比,具有工艺先进、产品质量稳定,制作、安装生产效率高,成型质量好,操作人员工种少(省去焊接、油漆工种),减少环境污染,降低操作劳动强度,缩短施工周期,加快工程建设进度等特点。金属矩形风管薄钢板法兰连接技术,根据加工形式的不同有所区别:法兰与风管管壁为一体的形式,称之为“共板法兰风管”、“无法兰风管”或叫“TDC法兰风管”;另一种则是“组合式法兰”风管(又称之为TDF 法兰),其薄钢板法兰用专用组合法兰机制作成法兰的形式,根据风管长度下料后,插入制作好的风管管壁端部,再用铆(压)接连为一体。

  薄钢板法兰风管有两种构造形式:经过专用机械加工风管与法兰同为一体及采用镀锌板制作的法兰条与风管本体采用铆接形成的风管,第二种是第一种的补充和加强形式。风管间的连接采用弹簧夹式、插接式或顶丝卡紧固等方式。薄钢板法兰风管的制作,可采用单机设备分工序完成风管制作;也可采用在计算机控制下,通过自动生产线将材料类型选择、剪切下料、风管板面连接形式及法兰成形、折方等工序顺序自动完成。自动化流水线使用镀锌板卷材,根据风管需要连续进行管材下料到半成品加工完成,全部工序只需30秒钟即可完成,实现了直风管加工和风管配件下料的自动化。异形风管可采用数控等离子切割设备下料,工序简单、操作时间短,下料准确。设备的配套使用实现了直风管加工和风管配件下料的自动化。

  金属矩形风管薄钢板法兰连接技术的技术指标应符合国家标准《通风与空调工程施工质量验收规范》GB50243,《通风管道技术规程》JGJ141以及《薄钢板法兰风管制作与安装》07K133中的有关规定。

  适用于工作压力不大于1500Pa 的通风及空调系统中风管长边尺寸不大于2000mm 的金属矩形风管的制作连接。

  变风量系统是一种通过改变进入空调区域的送风量来适应区域内负荷变化的全空气空调系统。主要用于办公和其他商用建筑的舒适性空调。

  变风量空凋系统运行成功与否,取决于空调系统设计是否合理、变风量末端装置的性能优劣以及控制系统的整定和调试。其中合理的系统设计是基础,末端装置的性能优劣是关键,控制系统调试是重点难点。

  变风量空调系统有各种类型,它们均由四个基本部分构成:变风量末端装置、空气处理及输送设备、风管系统及自动控制系统。图6.3显示了变风量空调系统四个基本部分的构成、作用与相互关系。

  变风量空调系统融合了定风量系统与风机盘管系统的优点,又克服了它们各自的不足,形成其独特的特点, 见表6.3-1。

  上海西郊国宾馆、中国电信上海信息枢纽大楼、厦门国际银行大厦、深圳华为公司、新加坡大使馆、杭州大剧院等。

  按复合板材质的不同, 非金属复合板风管主要有机制玻镁复合板风管、聚氨酯复合板风管、酚醛复合板风管、玻纤复合板风管。

  机制玻镁复合板风管是以玻璃纤维为增强材料,氯氧镁水泥为胶凝材料,中间复合绝热材料或不燃轻质结构材料,采用机械化生产工艺制成三层(多层)结构的机制玻镁复合板。在施工现场或工厂内切割成上、下、左、右四块单板,用专用无机胶粘剂组合粘接工艺制作成通风管道。

  酚醛铝箔复合板风管与聚氨酯铝箔复合板风管同属于双面铝箔泡沫类风管,风管内外表面覆贴铝箔,中间层为聚氨酯或酚醛泡沫绝热材料。

  玻纤复合板风管是以玻璃棉板为基材,外表面复合一层玻璃纤维布复合铝箔(或采用铝箔与玻纤布及阻燃牛皮纸复合而成) ,内表面复合一层玻纤布(或覆盖一层树脂涂料) 而制成的玻纤复合板为材料,经切割、粘合、胶带密封和加固制成的通风管道。

  复合板风管具有外观美观、重量轻、施工方便、效率高、漏风小、不需要外保温的特点,一般在现场制作,以避免损坏。

  非金属复合板风管制作安装均应符合国家有关的规范、规程:《通风与空调工程施工质量验收规范》GB50243、《通风管道技术规程》JGJ141、《非金属及复合风管》JG/T258、《复合玻纤板风管》JC/T591、《机制玻镁复合板风管制作与安装》09CK134。

  按中间复合绝热材料或不燃轻质结构材料的不同,机制玻镁复合板风管适用于工业与民用建筑中工作压力≤3000Pa的通风、空调、洁净及防排烟中的风管。

  复合板风管比较典型的工程有首都体育馆(机制玻镁复合板风管)、500千伏静安(世博)输变电站(机制玻镁复合板风管)、解放军309医院工程(玻纤复合板风管)、北京疾病预防控制中心中央实验室(聚氨酯复合板风管)、南京国际展览中心(酚醛复合板风管)。

  管道在施工过程中,管道内难免落进砂、砾石、砖块、电焊条、电焊渣等杂物,残存在管道内壁的底层,而管道内壁因氧化、腐蚀而残存在管道壁面的氧化铁皮等,

  在管网投入运行前,必须将这些杂质清除掉,而最好的、即环保、又节能的方法就是采用闭式循环冲洗法,能够清除掉管内一切杂物。

  利用水在管内流动的动力和紊流的涡旋及水对杂物的浮力,迫使管内杂质在流体中悬浮、移动,从而使杂质随流体带出管外或沉积于除污短管内清除掉。这种向管内注水,脏水循环、排掉;再换水,清水循环、排掉;再换水,净水循环,再排掉等循环过程称为闭式循环冲洗。

  (3)设计冲洗系统主管、支管及连通管,计算冲洗长度,在冲洗长度处安设除污短管,便于冲洗时沉积杂物。

  冲洗最终质量,应按设计要求标准执行,无设计要求时,应按《城镇直埋供热管道工程技术规程》CJJ/T81规定。

  唐山市新区、市区供热管网及各支线供热管网、北京阜成线供热管网及厦门机场空调冷却循环水管道、赛格广场、涿州热电厂等工程。

  给水管道中,取代镀锌钢管和塑料管道的薄壁不锈钢管道和薄壁铜管的应用已越来越广泛,连接方式也越来越多,除焊接和粘接以外,机械密封式连接的种类最多。因机械密封式连接无套丝作业、无焊接施工、无粘接作业,污染少,连接快速简便,发展前景好。

  1)卡套式连接:是一种较为简便的施工方式,操作简单,掌握方便,是施工中常见的连接方式,连接时只要管子切口的端面能与管子轴线保持垂直,并将切口处毛刺清理干净,管件装配时卡环的位置正确,并将螺母旋紧,就能实现铜管的严密连接,主要适用于管径50mm 以下的半硬铜管的连接。

  2)插接式连接:是一种最简便的施工方法,只要将切口的端面能与管子轴线保持垂直并去除毛刺的管子,用力插入管件到底即可,此种连接方法是靠专用管件中的不锈钢夹固圈将钢壁禁锢在管件内,利用管件内与铜管外壁紧密配合的“О”型橡胶圈来实施密封的。主要适用于管径25mm 以下的铜管的连接。

  3)压接式连接:是一种较为先进的施工方式,操作也较简单,但需配备专用的且规格齐全的压接机械。连接时管子的切口端面与管子轴线保持垂直,并去除管子的毛刺,然后将管子插入管件到底,再用压接机械将铜管与管件压接成一体。此种连接方法是利用管件凸缘内的橡胶圈来实施密封的。主要适用于管径50mm 以下的铜管的连接。

  1)卡压式连接:配管插入管件承口(承口“U”形槽内带有橡胶密封圈)后,用专用卡压工具压紧管口形成六角型而起密封和紧固作用的连接方式。

  2)卡凸式螺母型连接:以专用扩管工具在薄壁不锈钢管端的适当位置,由内壁向外(径向) 辊压使管子形成一道凸缘环,然后将带锥台形三元乙丙密封圈的管插进带有承插口的管件中,拧紧锁紧螺母时,靠凸缘环推进压缩三元乙丙密封圈而起密封作用。

  3)环压式连接:环压连接是一种永久性机械连接,首先将套好密封圈的管材插入管件内,然后使用专用工具对管件与管材的连接部位施加足够大的径向压力使管件、管材发生形变,并使管件密封部位形成一个封闭的密封腔,然后再进一步压缩密封腔的容积,是密封材料充分填充整个密封腔,从而实现密封。同时将管件嵌入管材是管材与管件牢固连接。

  应按设计要求的标准执行;无设计要求时,按《建筑给水排水及采暖工程施工质量验收规范》GB50242执行。

  卡压式连接比较典型的工程有:北京人民大会堂冷热水工程、财政部办公楼直饮水工程、上海汤臣花园热水工程、上海F1国际赛车场冷热水工程、大庆36000户人家直饮水工程。

  卡凸式连接比较典型的工程有:上海世博会中国馆,还有北京广安贵都大酒店(五星)、广州白云宾馆、广州亚运城、杭州千岛湖别墅等等。

  现代建筑机电安装正朝着工厂化和装配化方向发展,其基本特点是将全部工作分为预制和装配两个部分。

  工厂化预制的优越性在于既不受天气影响,也不受土建和设备安装条件的限制,待现场条件具备时,即可将预制好的管段及组合件运至现场进行安装。这对于缩短施工周期,加快施工进度,减少高空作业和高空作业辅助设施的架设,保证施工质量和安全,提高技术水平和平衡施量等都具有十分重要的意义。

  民用建筑管道工厂化预制的内容主要有:图纸深化、现场测量、绘制单线图、绘制加工图、备料、划线、下料、加工、组装、检验、编号、分期分批运至安装现场。

  工厂化预制主要有以下几项工作:深化设计、材料供应、预制加工、运输配送、现场安装,以及辅助并穿插在全过程中的质量控制和安全监控。

  以设计院提供的设计图纸为依据,按照国家法律、法规和标准规范的规定,进行深化设计,并在取得现场工程师认可后,绘制预制加工图。

  按照业主或招标文件要求,与现场测绘,同时选择合格的、符合业主或招标文件要求的合格供应厂商,及时收集资料及时送审,经确认后及时订货。

  管段加工图经确认后,交付给预制加工厂,由其按图进行加工。预制加工过程中,质量检验人员依据国家规范、设计要求、施工深化图以及预制加工图,对加工后的成品和半成品及时进行质量检验。

  根据施工进度计划,组织、协调现场分送、吊运准备工作,并踏勘预制组装件现场安装部位,配备必要的起重设备或协调现场原有的起重设备。

  根据进度计划将加工基地配送到现场的预制管线,按施工图进行合理的分配、排列;并根据规范要求先行制作支吊架,再将半成品管线)准确性:应严格按照施工深化图、单线图以及现场实测尺寸绘制。

  3)加工管段:管段编号、配件编号、口径标注、尺寸标注要逐一对应,不得混乱;所生成的材料明细表应与加工图一一对应,一目了然。

  4)可追溯性:加工图审定后,应存档,对有修改的部分,应重新绘制加工图修改版,并再次存档备查。

  预制加工基地尽可能选择在施工现场附近,加工基地一般设置有生活区、加工区、仓库区和办公区,各区域面积根据工程规模、类别、预制加工量而定。

  上海环球金融中心、上海通用汽车改造工程、上海国际博览中心10、11号馆、上海X-2国金中心等工程。

  在超高层供电系统中,有时采用一种特殊结构的高压垂吊式电缆,这种电缆不管有多长多重,都能靠自身支撑自重,解决了普通电缆在长距离的垂直敷设中容易被自身重量拉伤的问题。它由上水平敷设段、垂直敷设段、下水平敷设段组成,其结构为:电缆在垂直敷设段带有3根钢丝绳,并配吊装圆盘,钢丝绳用扇形塑料包覆,并与三根电缆芯绞合,水平敷设段电缆不带钢丝绳。吊装圆盘为整个吊装电缆的核心部件,由吊环、吊具本体、连接螺栓和钢板卡具组成,其作用是在电缆敷设时承担吊具的功能并在电缆敷设到位后承载垂直段电缆的全部重量,电缆承重钢丝绳与吊具连接采用锌铜合金浇铸工艺。

  4)吊装设备布置:吊装卷扬机布置在电气竖井的最高设备层或以上楼面,除吊装最高设备层的高压垂吊式电缆外,还要考虑吊装同一井道内其他设备层的高压垂吊式电缆。

  5)架设专用通讯线路,在电气竖井内每一层备有电话接口。指挥人、主吊操作人、放盘区负责人还必须配备对讲机。

  7)电缆盘架设:电缆盘至井口应设有缓冲区和下水平段电缆脱盘后的摆放区,面积大约30~40㎡。架设电缆盘的起重设备通常从施工现场在用的塔吊、汽车吊、履带吊等起重设备中选择。

  8)吊装过程:选用有垂直受力锁紧特性的活套型网套,同时为确保吊装安全可靠,设一根直径12.5mm 保险附绳,当上水平段电缆全部吊起,将主吊绳与吊装圆盘连接,同时将垂直段电缆钢丝绳与吊装圆盘连接。当吊装圆盘连接后,组装穿井梭头。在吊装过程中,在电气竖井井口安装防摆动定位装置,可以有效的控制电缆摆动。将上水平段电缆与主吊绳并拢,并用绑扎带,应由下而上每隔2m ,直至绑到电缆头,吊运上水平段和垂直段电缆。吊装圆盘在槽钢台架上固定后,还要对其辅助吊挂,目的是使电缆固定更为安全可靠。在吊装圆盘及其辅助吊索安装完成后,电缆处于自重垂直状态下,将每个楼层井口的电缆用抱箍固定在槽钢台架上。水平段电缆通常采用人力敷设。在桥架水平段每隔2m 设置一组滚轮。

  《电气装置安装工程电缆线路施工及验收规范》GB50168、《建筑电气工程施工质量验收规范》GB50303、《电气装置安装工程电气设备交接试验标准》GB50150、《建筑机械使用安全技术规程》JGJ33、《施工现场临时用电安全技术规范》JGJ46。

  1)电缆型号、电压及规格应符合设计要求。核实电缆生产编号、订货长度、电缆位号,做到敷设准确无误;

  3)电缆应做耐压和泄漏试验,试验标准应符合国家标准和规范的要求,电缆敷设前还应用2.5kV 摇表测量绝缘电阻是否合格。

  (1)技术特点:分支电缆是近年来的一项新技术产品,该产品根据各个具体建筑的结构特点和配电要求,将主干电缆、分支线电缆、分支连接体三部分进行特殊设计与制造,产品到现场经检查合格后可直接安装就位,极大地缩短了施工周期、减少了材料费用和施工费用,更好地保证了配电的可靠性。预分支电缆由三部分组成:主干电缆、分支线、起吊装置,并具有三种类型:普通型、阻燃型、耐火型。预分支电缆是高层建筑中母线槽供电的替代产品,具有供电可靠、安装方便、占用建筑面积小、故障率低、价格便宜、免维修等优点,目前已广泛应用于中高层建筑采用电气竖井垂直供电的系统和隧道、机场、桥梁、公路等供电系统。

  (2)施工技术:采用预分支电缆技术时,应先行测量建筑电气竖井的实际尺寸(竖井高度、层高、每层分支接头位置等) ,同时结合实际配电系统安装的位置量身定制,为避免因楼层功能改变引起容量的变动,宜将预分支电缆的干线和支线截面均放大一级,特殊情况还应预留分支线)预分支电缆的安装:预分支电缆可以吊装或放装,采用放装(从上往下或从未端开始施放),用户需要向制造厂家提出,电缆在出厂复绕时要逆向复绕。无论是吊装还是放装,安装时每一楼层都要有专人监护,以免电缆刮伤。在电缆提升前应先安装钢丝网套,钢丝网套安装时要用扎紧线与电缆扎紧,其扎紧线应位于网套的末端。在电缆全部吊好后应及时将电缆固定在安装支架上,以减少网套承受的拉力,从而避免因拉力过大把电缆外护套拉坏。

  《电气装置安装工程电缆线路施工及验收规范》GB50168、《建筑电气工程施工质量验收规范》GB50303、《预制分支电力电缆安装》标准图集00D101-7。

  (1)技术特点:电缆穿刺线夹施工技术,是一种新型的电缆连接器技术,是代替分线箱、T 接箱最佳的产品,施工时无需截断主电缆,可在电缆任意位置做分支,不需要对导线和线夹做特殊处理,操做简单、快捷,与常规接线方式相比,免去了剥除绝缘层、搪锡或压接端子、绝缘包扎等工序,减少了绝缘层、电线头等施工垃圾,降低了常规做法难以避免的环境污染,节省人工和安装费用。

  (2)施工工艺:一般穿刺分支接头结构多采用绝缘线芯穿刺线夹工艺制作,穿刺分支电缆的绝缘穿刺线夹具有力矩螺母和穿刺结构,力矩螺母用于保证恒定的接触压力,确保良好的电气接触,并同穿刺结构一起使安装简便可靠。绝缘穿刺线夹的使用对干线的机械性能和电气性能影响小。

  (3)施工方法:采用电缆穿刺线夹施工时,首先在主线电缆上确定好分支线的位置,并在确定的部位剥去200~500mm 外护套,将主线电缆芯线分叉,无需剥去电缆芯线内护层(绝缘层),将分支线直接插入具有防水功能的支线帽内(无需剥去绝缘层),再将线夹固定在主线电缆分支芯线处,在连接处用手拧紧线夹螺母,最后用套筒板手套固定线夹按顺时针拧紧线夹上的力矩螺母,当穿刺刀片与金属导体的接触达到最佳效果时力矩螺母便会自动断离,如图6.10所示,不需要对导线穿刺线. 技术指标

  《电气装置安装工程电缆线路施工及验收规范》GB50168、《建筑电气工程施工质量验收规范》GB50303、产品技术标准。

  适用于中高层建筑1kV 电系统绝缘电缆的分支连接。分支连接适用于1.5~2400mm 铜、铝导体的绝缘电缆。

  液压提升(顶升)倒装大型储罐技术是近年较广泛采用的新工艺,按液压机具的不同可分成液压提升倒装法和液压顶升倒装法两种。它采用在罐体内圆周均布若干个液压千斤顶(液压提升缸),通过自动控制液压系统向千斤顶(提升缸)同时供油,使各千斤顶(液压缸)同步上升,带动罐壁起升,循环重复这一过程,即可最终完成罐体吊装。

  液压提升(顶升)倒装大型储罐的方案设计及选用应遵循国家的相关标准、规范的规定。施工原理是:在罐内布置高压油泵站,液压油经高压油管进入千斤顶使柱塞推动顶柱上升,提升(顶升)力通过胀圈、托板等传至已组装焊接完毕的上部罐体,将罐体顶升到一定高度,再组装焊接下一圈壁板,依此往复进行,直至全部罐壁组焊完毕。整个工装机具包括液压千斤顶(提升缸)系统、自控操作系统和液压站及管路系统。为提高罐壁的刚度,需设置胀圈。为了操作自动化,在液压提升(顶升)系统上要装自控阀、液压限位器、报警装置等。在罐体外要设操作控制台,用以控制液压千斤顶(提升缸)的起升和回缩。

  (6)液压千斤顶(提升油缸)起重能力大,采用不同的数量组合,就可以实现所需要的提升(顶升)负荷。

  大型储罐正装法施工,罐体组装按照自下而上的顺序进行。首先进行罐体的定位放线,铺设焊接底板;然后对壁板进行精确下料预制,在底板边缘板上焊接好工装件,用精确组装法组装第一圈壁板,调整壁板圆弧度、垂直度和上口水平度并用斜支撑固定,焊接立缝;安装内置悬挂平台和壁板专用组装卡具,组装第二圈壁板并依次焊接立缝、横缝(埋弧自动横焊);提升内置悬挂平台,自下而上依次安装各层壁板;第二圈壁板焊接完成后可同时安装浮盘装配式操作平台,在平台上组装浮顶船舱;壁板和浮盘安装结束后,开始安装中央排水系统、导向管、密封装置等附件;最后进行充水试压、浮盘升降试验和基础沉降试验。

  悬挂平台由三角架、平台梁、平台板、防护栏杆、安全网和焊接在壁板上的挂耳组成(结构见图6.11)。悬挂平台的三角架按3m 一个沿罐壁圆周设置。平台亦分为3m 一段,焊接固定于三角架上。 3

  组装第二圈壁板前,在第一圈壁板内侧安装悬挂平台,以供第二圈壁板组装焊接用,安装位置在第一圈壁板内侧2/3高度处,同时安装好防护栏杆和安全网。在靠近罐人孔处搭设斜梯,以供人上下操作平台,在浮顶施工时,将浮顶下面的斜梯拆除,浮顶上面的斜梯逐层搭设。

  在第三圈壁板组装前,进行内置悬挂平台的提升。提升时,将若干个手动葫芦按每3m 距离沿罐壁圆周布置半圈(或1/3圈,依据罐周长而定,一般不超过30个),葫芦吊钩悬挂于第二圈壁板上部吊耳上,由指挥人员统一指挥,各葫芦同时同步缓缓拉升,直至壁板2/3高度处进行就位。就位时,注意将所有三角架支腿均插于挂耳内,避免漏挂。就位后,加装一节斜梯至平台。

  符合《立式圆筒形钢制焊接储罐施工及验收规范》GB50128、《钢结构工程施工质量验收规范》GB50205、《现场设备工业管道焊接工程施工及验收规范》GB50236。

  营口港墩台山原油贮运工程(2台50000m 储罐)、营口仙人岛一期工程(6台333100000m 及4台50000m 储罐)、南京炼油厂20000m 储罐工程、天津汇鑫油库工程

  随着人们对火灾危害越来越重视,规范加重了对防火的要求。从陆陆续续更新的规范条文中看出专家编者对防火措施一个比一个要求高,大力推荐使用矿物绝缘电缆,视乎只有矿物绝缘电缆才是消防设备正常运作的保证。但这样也意味着更多的付出。

  矿物绝缘电缆简称MI电缆,习惯称为氧化镁电缆或防火电缆,由矿物材料氧化镁粉作为绝缘的铜芯铜护套电缆,矿物绝缘电缆由铜导体、氧化镁、铜护套两种无机材料组成。由于电缆全都是用无机物(金属铜和氧化镁粉)组成,它本身不会引起火灾,不可能燃烧或助燃,由于铜的熔点是1083℃、氧化镁的熔点是2800℃,因此该种电缆可以在接近铜的熔点的火灾情况下继续保持供电,是一种真正意义上的防火电缆。但其造价高,虽能直接敷设,但实际施工难度大。潮湿的环境会对电缆断面的绝缘层造成了不利影响。因为矿物绝缘电缆在敷设后短时间内不能进行接头制作和电缆终端头压接,电缆截断后,断面会在空气中暴露一段时间,容易造成湿气渗入断面,造成绝缘层的受潮。由于刚性矿物绝缘电缆在结构设计上的天然不足,造成其在性能、生产及敷设等方面都存在着一定的缺陷。在发达国家特别是欧盟国家中,柔性矿物绝缘防火电缆的崛起,刚性矿物绝缘电缆的使用已被替代。在国内,相关技术掌握在少数厂家手里,产品各有弊端。目前还处于推广阶段,工人施工水平难以保证其性能发挥。

  《民用建筑电气设计规范》JGJ16―2008第13.10.4条规定:消防设备供电及控制线路选择,应符合下列规定: 1 火灾自动报警系统保护对象分级为特级的建筑物,其消防设备供电干线及分支干线,应采用矿物绝缘电缆; 2 火灾自动报警保护对象分级为一级的建筑物,其消防设备供电干线及分支干线,宜采用矿物绝缘电缆;当线路的敷设保护措施符合防火要求时,可采用有机绝缘耐火类电缆; 3 火灾自动报警保护对象分级为二级的建筑物,其消防设备供电干线及分支干线,应采用有机绝缘耐火类电缆; 4 消防设备的分支线路和控制线路,宜选用与消防供电干线或分支干线耐火等级降一类的电线或电缆。而《住宅建筑电气设计规范》J 1193 -2011第6.4.4 条规定:建筑高度为 100m 或 35 层及以上的住宅建筑,用于消防设施的供电干线应采用矿物绝缘电缆;建筑高度为 50m~100m且 19 层~34 层的一类高层住宅建筑,用于消防设施的供电干线应采用阻燃耐火线缆,宜采用矿物绝缘电缆 ;10 层~18 层的二类高层住宅建筑,用于消防设施的供电干线应采用阻燃耐火类线缆。由此可见,超高层必需要用矿物绝缘电缆,其余可以不用。但在《建筑设计防火规范》 GB50016-2014第10.1.10条第3款内:消防配电线路宜与其他配电线路分开敷设在不同的电缆井、沟内;确有困难需敷设在同一电缆井、沟内时,应分别布置在电缆井、沟的两侧,且消防配电线路采用矿物绝缘类不燃性电缆。由此可见新防火规范要求更高,无论建筑高度,单单共井就要采用矿物绝缘电缆,试问开发商会为了省矿物绝缘电缆的钱而去设置两个电井吗,这样将占用更多面积。回顾《民用建筑电气设计规范》JGJ16-2008第13.9.13条中规定的各类消防用电设备在火灾发生期间的最少连续供电时间图1所示。从规范上看,消火栓泵、防排烟设备、消防电梯需要持续供电3小时。笔者认为,对于超高层建筑,需要更多消防疏散时间及救火时间,故应按规范满足其持续供电3小时要求,即采用矿物绝缘电缆。对于非超高层建筑用耐火电缆即可,即使是超高层建筑的地下室的防排烟设备,其与塔楼无着火的必然关系,也采用耐火电缆即可。

  按理应多用矿物绝缘电缆全部满足消防持续供电要求,但本身规范编写的具有争议性,麻木全部采用矿物绝缘电缆,将大大增加工程造价,且工人施工技术是个问题,厂家产品质量是个问题,两者结合在一起,当真的火灾时,其能否起到作用有待实际考验。有工程项目试过矿物绝缘电缆因施工及后期维护问题,需全部更换厂家产品。产品要放到实际环境长时间实验才能验证其真实性能,而不是单单短时的防火实验。既然规范在大推矿物绝缘电缆,每本规范见解要求不一样,我们应从实际分析,根据需求选择是否用矿物绝缘电缆。

  相对矿物绝缘电缆,耐火电缆技术成熟,生产厂家众多,在满足实际工程项目消防需求供电时间时,应尽量采用技术成熟的产品。产品可靠性才是最重要,毕竟防火工程不是产品的试验田,待长时间使用后才发现天然不足,关键时候才发现无法使用,这样就得不偿失。

  在现代火电厂的技术改造与升级中,必须加强对于火电厂热工仪表与控制电缆设计优化措施的研究与实践,在综合各种先进理论与技术研究成果的基础上,实现火电厂热工仪表与控制电缆设计优化措施的智能化、科学化、高性能化、一体化发展,为火电企业的生产与安全管理提供必要的基础。

  火电厂热工仪表主要由管路仪表、程控仪表、地表计等设备组成,通过电缆将各种设备连接形成回路或系统,实现对于各机组设备的检测、调节,有效提升了各种设备的可靠性与利用性。热工仪表自动化技术是为火电厂生产工艺服务的,加强对于相关技术应用与发展问题的研究,为提高火电厂的生产效率奠定了坚实的基础,而且提升了火电机组的稳定性与安全性。

  现代电子科学技术的快速发展及在火电厂热工仪表系统中应用的不断完善,对热工仪表故障诊断及排查提供了详细的数据信息资源。在对热工仪器仪表系统故障进行检查过程中,检修校验人员应对故障发生前后的相关特性参数进行全面系统的对比分析,进而实现对故障的快速定位和故障类型的准确判断。对于火电厂热工仪表的故障问题,DCS系统中的自动控制记录曲线是仪表运行工况和故障特征的重要数据信息,校验检修人员要详细分析和提取记录曲线中的相关波动数据信息,尤其对于无规律可言的混乱波动特性工况应非常重视,以便为故障定位和故障排除提供准确的数据信息,有效提高仪表检修校验工作质量和效率。在热工仪表自动化的实际应用中,自动化系统比较复杂,同时设计的范围比较广泛,热工测点分散距离比较远,安装施工比较复杂,并且周期比较长,这就需要我们在安装的时候一定要认线 火电厂热工仪表设计优化主要体现在自动化技术上

  (1)设备智能化,在现代电力能源开发与利用技术快速发展的背景下,火电厂热工仪表中的各种设备基本实现了智能化监控,借助先进的电子及计算机管理系统,配置先进的智能型机械仪表与精密元件,从而实现对于电力生产全过程的智能化管控;(2)技术高新化,火电厂热工仪表自动化技术的应用综合运用了现代电子计算机及信息技术,以及最新的热能工程技术与控制理论,实现了对于火电机组运行中相关热能与电力参数的科学监控与检测,自动化技术趋向于高新化发展。

  总结多年的设计经验,电缆优化无非从几个方面着手考虑:现场设置接线盒合并电缆、现场配电、电子设备间分散布置,设置远程IO以及采用现场总线)基于合并电缆原则的优化方案

  目前,通过各方调研,包括对国外电厂参观调研的结果,通常做法都是在现场设大量的接线箱, 通过物理区域同类型信号的合并,采用大对数或多芯数电缆将信号接至控制系统。针对这种情况, 在广东省某百万千瓦燃煤电厂的设计过程中,前期对锅炉区域和汽机区域规划了大量的开关量接线箱,同一工艺系统内的各个阀门状态反馈和指令信号接至同一接线盒内,合并电缆后送至同一个 DCS 机柜,由于 DCS 是按工艺系统划分,这种方式可以保证同一接线盒内电缆的合并效率最高。

  由于目前电动装置均采用一体化设备, 所有的配电箱不再设置控制功能,仅配电而已。 当配电箱采用集中布置方式时,电缆数量大,敷设工作量大,对桥架的占用量也大,非常不利于设计优化。 通过对国外电厂的调研,发现也采用了就地分散配电的方式。由于这种分散配电方式是近期才开始推广, 目前还没有在施工图中实施。 这种方案的实施也会引起配电系统切换设备投资的增加,但安全性也会相应提高。(3)基于电子设备间分散布置及远程 IO 应用的优化方案

  随着技术的发展,DCS 厂家的高速数据总线的通讯距离均能满足在主厂房内分别建立锅炉、汽机电子设备间的物理分散要求。 火电行业常用的DCS 厂商的I/O 模件均能够适应 0~40℃ 环境温度,5%~95% 的相对湿度 , 振动达到 0~200Hz,0.75G, 完全能适应汽机房振动较大的环境, 抗电磁干扰符合CE 和 IEC 标准,各 DCS 厂商的I/O 模件抗物理干扰的问题都得到很好的解决, 完全符合在锅炉房及汽机房就地建立电子设备间的要求。

  分散控制系统(DCS)物理分散可采取电子设备间(DCS 控制站) 分散布置及采用远程I/O(站) 等实现。 分散控制系统(DCS)物理分散涉及到通讯和抗干扰条件 、远程 I/O 和远程控制站应用等。大量的工程实践证明,电子设备间的分散布置以及远程I/O的应用对减少电缆量的效果是最显著的。

  现场总线技术从根本上彻底实现了控制系统的物理分散。根据现场总线的定义:现场总线(fieldbus)为:“安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、双向、多点通信的数据总线称为现场总线”。 现场总线的应用原本是为了提高信息化水平, 但是随着现场总线技术的不断推广应用,在这个过程中,我们发现采用现场总线技术不仅可以提高电厂的信息化水平,而且可以节省大量电缆。 虽然节省电缆不是它的初衷,但实践证明采用现场总线技术之后,确实节省了不少电缆。

  通过分析,我们发现,采用串行通信技术,这个是现场总线节约电缆的根本。同一个设备,有多个 IO 点,常规控制系统中采用的是并行传输,每个 IO 点都需要一对电缆芯来传输。 但是采用现场总线之后, 多个设备的多个信号信号可在一根电缆中进行并行传输,大大节省了电缆的用量。现场总线技术在电厂已经得到了非常广泛的应用,从辅助车间到主厂房均有大范围的应用案例。 例如,广东平海电厂化水车间常规电缆只用了 3.5km 左右,算上通讯电缆后,电缆量也不过为常规电厂的 15%, 而常规电厂化水车间电缆用量在 36km 左右,当然,这其中最显著的是电缆桥架明显减少。全面应用现场总线技术, 不仅能大大提高电厂的数字化水平,也能很好的节约电缆的用量。

  综上所述,在火电厂的生产与管理工作中,仪表与控制电缆设计优化措施是其正常运转与安全管理的重要基础,也是现代电力生产技术发展的重要标志。通过这些优化方案在工程中的具体应用, 体现了热控专业采用先进的技术以及创新的精细化设计对于节省电厂建设投资以及节能减排起到的良好效果。

  [1]中国电力企业联合会.GB 50217—2007电力工程电缆设计规范[S].北京:中国计划出版社,2008.

  [2]电力行业规划设计标准化技术委员会.DL/T 5182—2004火力发电厂热工自动化就地设备安装、管路及电缆设计技术规定[S].北京:中国电力出版社,2004.